Endogenous osteonectin/SPARC/BM-40 expression inhibits MDA-MB-231 breast cancer cell metastasis.

نویسندگان

  • Jennifer E Koblinski
  • Benjamin R Kaplan-Singer
  • Sherilyn J VanOsdol
  • Michael Wu
  • Jean A Engbring
  • Songlin Wang
  • Corinne M Goldsmith
  • John T Piper
  • Jaroslav G Vostal
  • John F Harms
  • Danny R Welch
  • Hynda K Kleinman
چکیده

Skeletal metastases occur with high incidence in patients with breast cancer and cause long-term skeletal morbidity. Osteonectin (SPARC, BM-40) is a bone matrix factor that is an in vitro chemoattractant for breast and prostate cancer cells. Increased expression of osteonectin is found in malignant breast tumors. We infected MDA-231 breast cancer cells with an adenovirus expressing osteonectin to examine the role of osteonectin expression in breast cancer cells and its effect on metastasis, in particular to bone. Expression of osteonectin did not affect MDA-231 cell proliferation, apoptosis, migration, cell aggregation, or protease cleavage of collagen IV. However, in vitro invasion of these osteonectin-infected cells through Matrigel and colony formation on Matrigel was decreased. Interestingly, high osteonectin expression in MDA-231 cells inhibited metastasis in a dose-dependent manner to many different organs including bone. The reduction in metastasis may be due to decreased platelet-tumor cell aggregation, because exogenous osteonectin inhibited platelet aggregation in vitro and the high osteonectin expression in MDA-231 cells reduced tumor cell-induced thrombocytopenia in vivo compared with control-infected cells. These studies suggest that high endogenous expression of osteonectin in breast cancer cells may reduce metastasis via reduced invasive activity and reduced tumor cell-platelet aggregation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polysaccharide from Sepia esculenta ink and cisplatin inhibit synergistically proliferation and metastasis of triple-negative breast cancer MDA-MB-231 cells

Objective(s): This paper aims to investigate synergistic inhibition of polysaccharide from Sepia esculenta ink (SIP), a newly isolated marine polysaccharide in our laboratory, on breast cancer MDA-MB-231 cells exposed to cisplatin. Materials and Methods: Cell viability of MDA-MB-231 cells was determined by CCK 8 assay. Median-effect concentration was analyzed using Chou-Talalay method that was ...

متن کامل

A Mimic of the Tumor Microenvironment on GPR30 Gene Expression in Breast Cancer

Introduction: The G-protein coupled receptor 30 (GPR30) gene is a member of the G-protein coupled receptor (GPCR) family; involved in breast, endometrial, and ovarian cancers. Many GPCR receptors that are implicated in several types of human cancers are correlated with increased cell proliferation and tumor progression; especially GPR30 gene. Methods: The breast cancer MCF-7 and MDA-MB-231 cel...

متن کامل

THE EFFECT OF QUINACRINE ON THE EXPRESSION OF WNT3A GENE IN MDA-MB 231 AND MCF7 BREAST CANCER CELL LINES

Background & Aims: Triple-negative breast cancer cells refer to any breast cancer that does not express the genes for the estrogen, progesterone, and HER2 receptors. The Wnt signaling pathway is important in the development and progression of various types of cancers. Quinacrine, a derivative of 9-aminoacridine, has been shown to inhibit the growth of several types of cancer cells. In this stud...

متن کامل

Metastasis inhibition by BRMS1 and miR-31 replacement therapy in claudin-low cell lines

Objective(s): The growing trend of research demonstrates that dynamic expression of two metastasis repressor classes (metastasis suppressor genes and anti-metastatic miRNA) has a close relationship with tumor invasion and metastasis. Using different strategies, it was revealed that cellular levels of miR-31 and Breast cancer Metastasis Suppressor1 (BRMS1) protein, whic...

متن کامل

Combination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells

Objective(s): Breast cancer remains a global challenge, and further chemopreventive therapies are still immediately required. Emerging evidence has revealed the potent anti-cancer effects of biguanides, Metformin (MET) and phenformin (PHE). Thus, to explore an efficient chemopreventive strategy for breast cancer, the antiproliferative effects of the combination of MET and PHE against breast can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 65 16  شماره 

صفحات  -

تاریخ انتشار 2005